2013 Water Management Workshop Series

ING EVER

Metropolitan Planning Council

Chicago Metropolitan Agency for Planning

Regulations and Ordinances– June 26, 2013

Course ID 7254

Workshop series overview

Give conservation coordinators tools to educate and encourage customers to conserve water by emphasizing the importance of conservation and the role it plays in utility management, regulations and ordinances, water and revenues.

- **1.** May 29: Utility planning and asset management
- **2.** June 26: Regulations and ordinances
- **3.** July 31: Indoor and outdoor water use
- 4. August 28: Water rates and revenue

Key takeaways

- 1. Understand the role of regulations and ordinances on effective water supply management.
- 2. Recognize the barriers to successful implementation of water conservation ordinances and identify strategies to reduce them.
- 3. Become familiar with upcoming regulatory changes and how they will affect local water supply operations, including encouraging water conservation.

Ordinances

Integrating and Implementing Water Conservation Ordinances

Abby Crisostomo, Metropolitan Planning Council Bill Balling, WRB, LLC

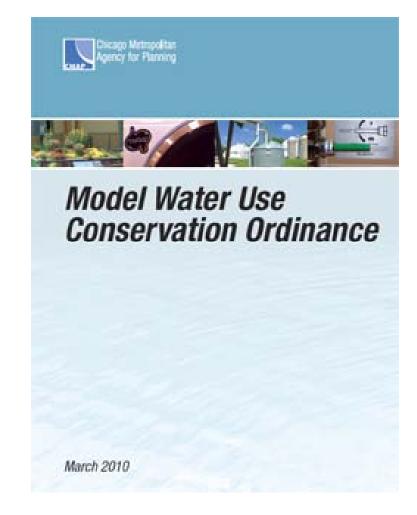
Existing model ordinances in NE Illinois

Abby Crisostomo, Metropolitan Planning Council, @AbbyMPC DuPage Water Commission, June 26, 2013

Role of water conservation ordinances

- Carrots and sticks
- Working with municipal staff
- Integrating with other ordinances •

Role of water conservation ordinances


- Lawn watering restrictions
- New sod restrictions
- Other watering restrictions
- Municipal operations
- Water rates
- Water meters
- Water billing
- Water charge

- Well setback zones
- Groundwater protection overlays
- Watershed protection
- Landscaping
- Native plants
- Nuisance weeds
- Plumbing code
- Water-efficient fixtures
- Drought

- Residential indoors and outdoors
- ICI indoors and outdoors
- Rainwater harvesting
- Water waste
- Pricing
- Information and outreach
- Violations and enforcement

Northwest Water Planning Alliance Communities by Water Source, 2010

Northwest Water Planning Alliance Communities

NWPA Counties

Non-NWPA Municipalities

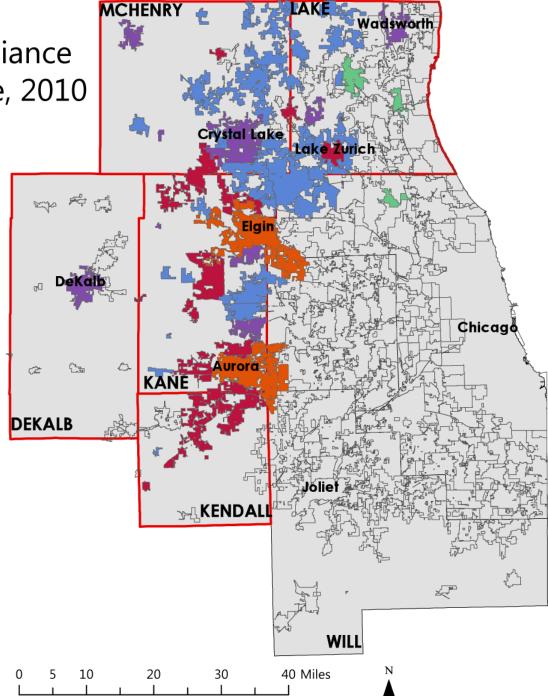
NWPA Municipalities by Water Source

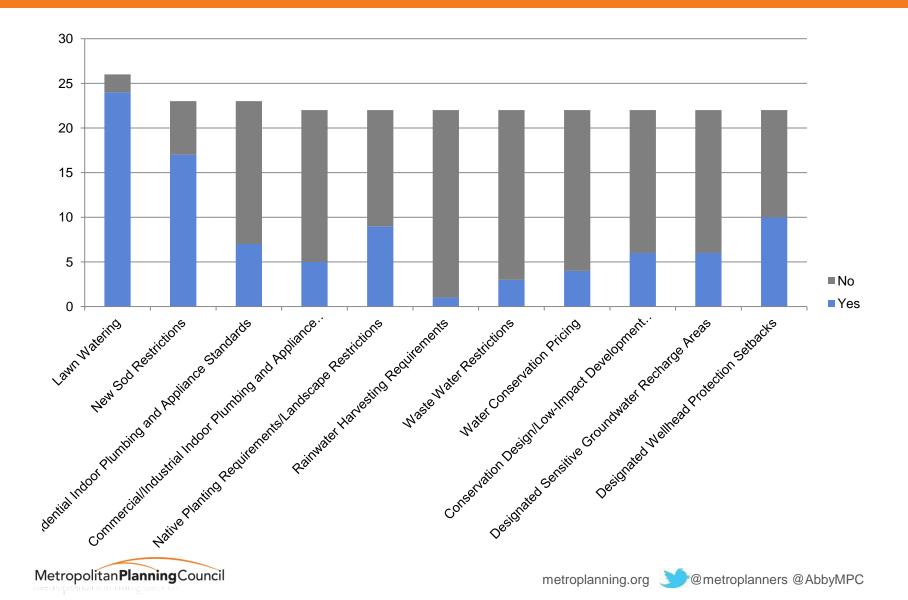
Deep Aquifer

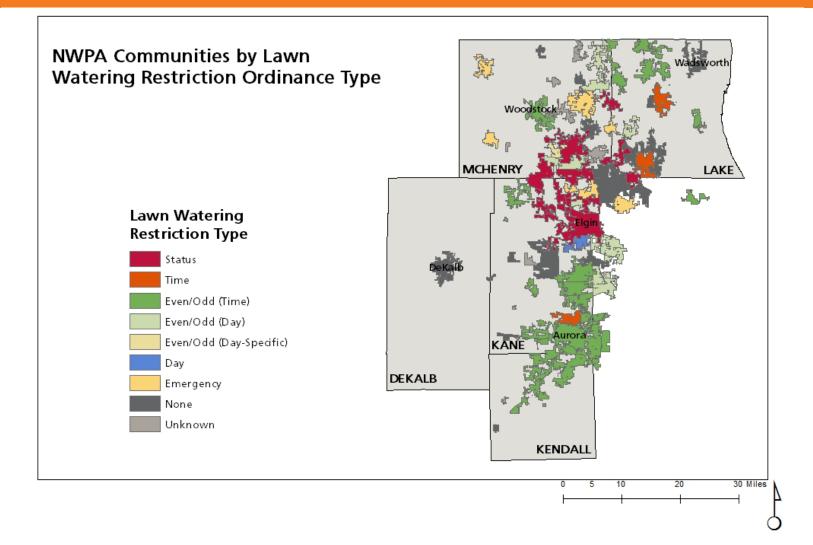
Deep Aquifer and River

Deep and Shallow Aquifer

Lake


Shallow Aquifer


Illinois



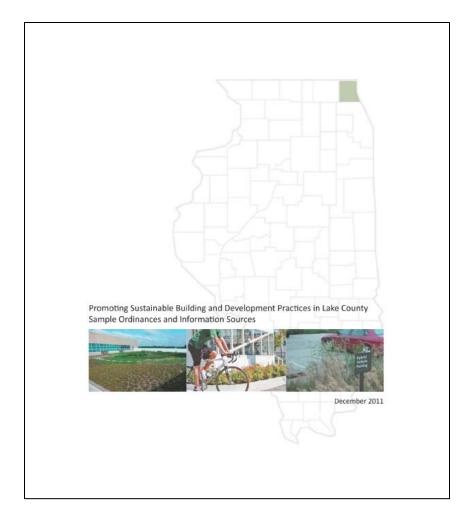
Sources: Municipalities, water sources, and Northwest Water Planning Alliance from Metropolitan Planning Council; counties from Illinois State Geological Survey

Map prepared by Abby Crisostomo 26 April 2012

Year–Round Conservation **Ordinance:**

Even/odd, sprinklers allowed 6am-9am and 6pm-9pm

- 18 or 24 hours available
- Non-potable water and handheld watering devices can be used any day or time
- Could be the "Green" in a colorcoded system


Drought Provisions

- **Drought Provision:** Sprinkler system use prohibited
 - Outdoor use of water allowed only with non-potable water or handheld watering devices
 - Could be the "Yellow" in a color-coded system
- Extreme Drought Provision: Total ban on outdoor watering
 - Could be the "Red" in a color-coded system

Existing model ordinances: Lake County

- Energy conservation and renewables
- Land use, transportation and mobility
- Open space and natural resources
- Water quality and quantity
- Stormwater management
- Redevelopment, waste minimization and material reuse
- Construction-phase pollution control
- Outdoor lighting
- Indoor environmental quality
- Food supply
- Incentive-based approaches to promoting sustainability

Existing model ordinances: Lake County

Open space and natural resources

Native plants

Water quality and quantity

- Rainwater harvesting/reuse
- High-efficiency plumbing fixtures
- Low water use landscaping
- Efficient irrigation systems
- Turf area management
- Individual metering

Contact Us:

www.metroplanning.org

www.chicagolandh2o.org

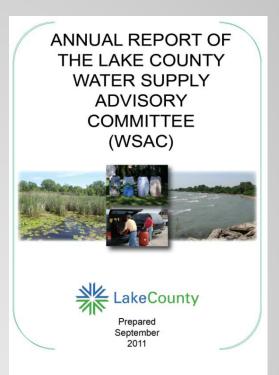
Abby Crisostomo

Associate

acrisostomo@metroplanning.org

@AbbyMPC

Lake County Water Supply Advisory Committee (WSAC) Annual Report



Water Supply Advisory Committee

With our region's population projected to grow as much as 38% over the next 40 years, we must plan for our future water supply.

Lake County, along with municipalities and professionals in both the private and public sector, formed the Water Supply Advisory Committee (WSAC). This group is working to establish sustainable policies and practices for our water supply. The WSAC annual report includes important information about best practices for:

- groundwater protection
- water conservation
- full cost water pricing

Groundwater Protection

It's important that we protect groundwater from threats of contamination and preserve the quality of aquifers.

Some portions of Lake County are 100% dependent on groundwater to meet residential, commercial and municipal demands.

Both the *quantity* and *quality* of groundwater available in Lake County must be monitored and managed to assure that all future water needs of Lake County are met.

THREAT: ABANDONED WELLS

Wells that are no longer in use are no longer monitored. If one of these wells were to become contaminated it could easily and quickly contaminate nearby wells. Remediation would be extremely costly and nearly impossible.

Water Conservation

Water Conservation is one of the most important ways that we can assure a long term reliable groundwater source.

The WSAC report recommends developing specific goals for reducing water consumption. A few of these are:

Endorse the installation of water saving fixtures (faucets, showerheads)

Endorse the installation high efficiency toilets and washers

Install and replace water meters

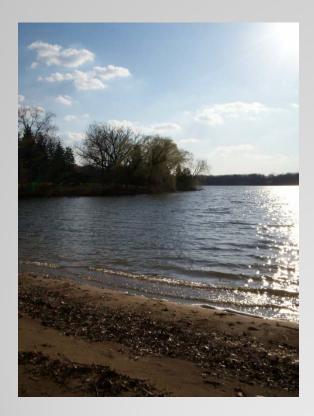
Promote rain barrel programs, rain gardens and native landscaping

Promote high efficiency sprinkler and irrigation systems

Develop programs for leak detection, leak survey and repair

Full Cost Water Pricing

Full cost water pricing charges users for the full cost of water – including operational and maintenance expenses and capital improvements and replacement expenses.


To study this, it's important to consider:

- Customer classes (residential, commercial, industrial)
- Rate types (uniform block rates, decreasing block rates, increasing block rates, seasonal rates)
- Billing intervals (monthly, quarterly)
- Collections

What's Next?

The next step for the committee will be to evaluate alternative water supplies, educate the public about water conservation and work with policy makers to create appropriate strategies to ensure Lake County residents have clean and safe water now and in the future.

THANK YOU

www.lakecountyil.gov

Discussion: Integrating and implementing water conservation ordinances

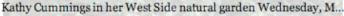
NEWS

All Sections

Home > Featured Articles > Chicago

Weed law in Chicago sends native plant gardeners to court

May 19, 2013 | Mary Schmich


Chicago's growing season is still young, and so far the alleged villain in Kathy Cummings' garden is only 2 inches tall.

By summer's peak, however, the accused will stand 4 gangly feet once again, and once again someone is sure to mistake it for a weed.

It's milkweed. That is not a weed.

6

Discussion: Integrating and implementing water conservation ordinances

- What water conservation ordinances do you use in your community?
- What barriers have you faced with implementing and enforcing ordinances?
- Bring your own questions about using water conservation ordinances

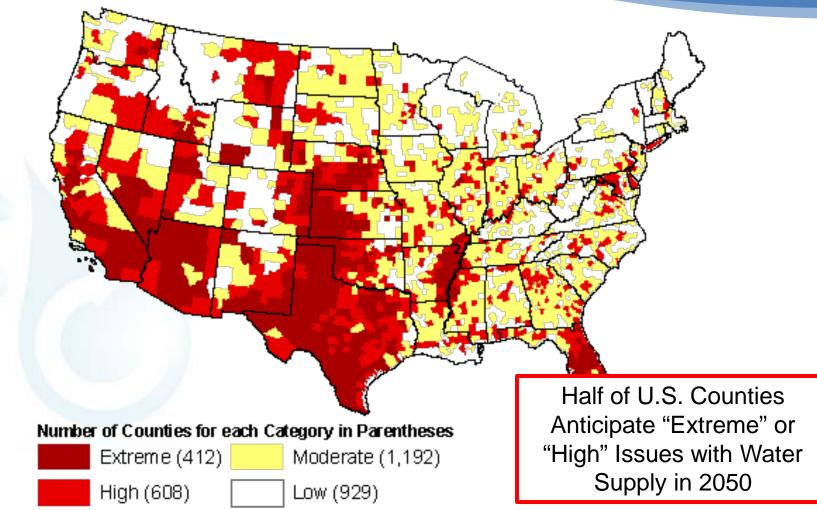
Regulations

Role of Water Reuse in Water Conservation and Changes to the State Plumbing Code

John Bauer, Wahaso Josh Ellis, Metropolitan Planning Council

Water Harvesting

For Commercial & Institutional Buildings



JohnB@Wahaso.com 630-235-2143

Wahaso water harvesting solutions

A Water Crisis on the Horizon

Water Supply Sustainability Index (2050) With Climate Change Impacts

What is "Water Harvesting"?

Water Harvesting is the collection, cleaning, storage and reuse of onsite water sources, to reduce the consumption of municipal

potable water.

Т

ERMS	Rainwater	From roofs and above-ground collectors
	Stormwater	From ground surfaces – Parking lots, run-off
	Greywater, Gray Water	Untreated waste water "gently used" in showers, sinks, processes
	Condensate	From cooling system blower units or steam systems
	Groundwater	From below-grade sumps (around basements)
	Reclaimed Water	Municipally-treated sewage for reuse
	On-Site Treated Non-Potable Water	Processed water from any source ready for non- potable reuse

Megatrends Support Water Harvesting as One Conservation Effort

Incentives

Predicted Shortage of Potable Water

• Conservation Efforts

The Green Movement

- Concern for Environment
- LEED Certification

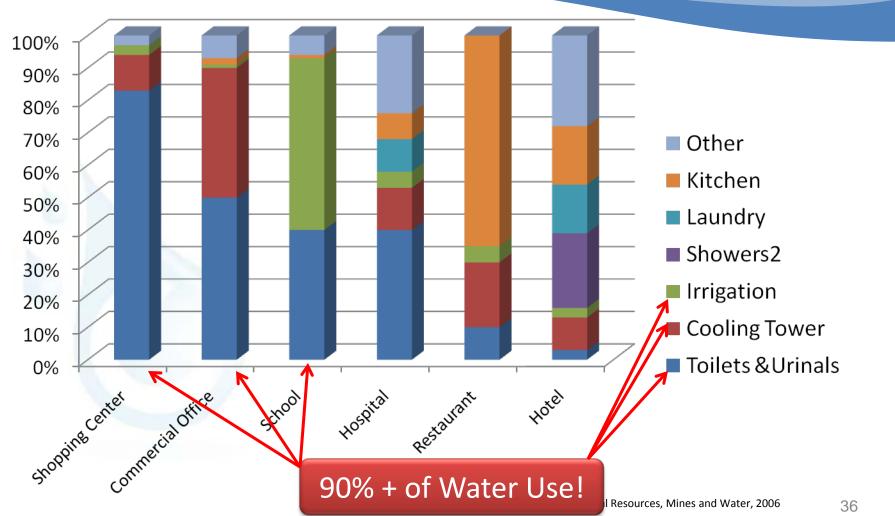
Stormwater Best Management

Practices

• Detention Requirements

What's in it for Owners?

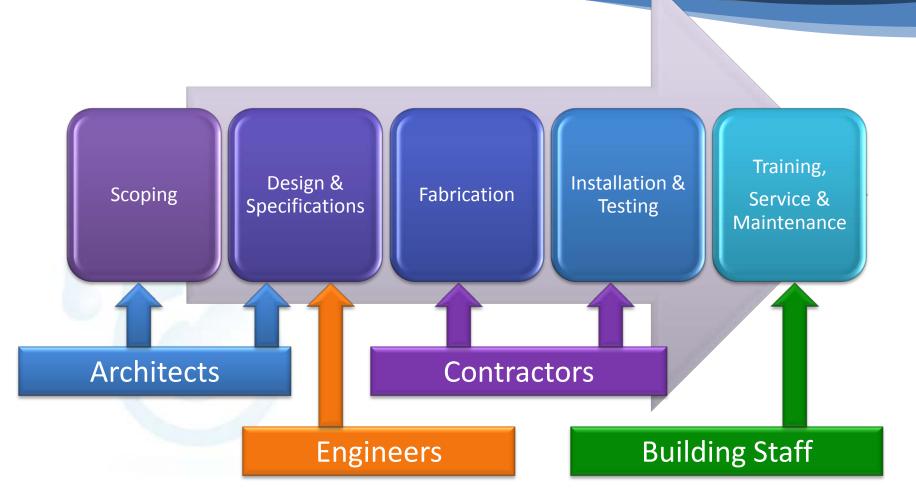
- Save money on municipal water and sewer charges
- Convert stormwater liability into an asset
- Protect the environment



- "Green" building certification
- Regulatory requirements, incentives
- Higher property resale value
- Good public relations


The Harvesting Opportunity in Commercial Properties

Most Water Use in Commercial Buildings can be Replaced with Harvested Rainwater and Stormwater


Issue: Plumbing Design Affects Options for Life of Building

Ability to capture and harvest greywater Ability to flush toilets with non-potable water

20 million gallons of savings over life of building!

Development Process Touches Multiple Customers

System Design Objectives

- Make a significant and meaningful impact on reducing the amount of municipal water use
- Match a system to meet the unique characteristics of the building
 - Location, use, opportunities, local codes
- Ensure that the water is safe for storage & application
- Keep the system as simple as possible
 - Complexity adds up-front cost, maintenance, risk
- Keep the system cost-per-gallon saved as low as possible

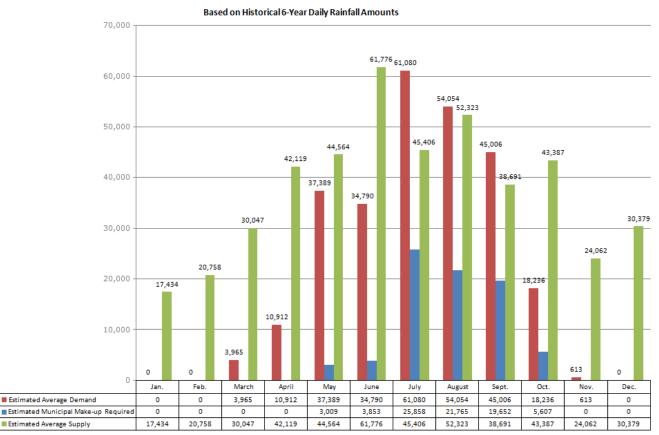
Scoping: Evaluating Water Sources & Applications

Potential Sources

- Rooftop rainwater
- Surface stormwater
- Greywater from showers, sinks, washers
- Cooling condensate
- Steam condensate
- Groundwater ejectors
- Cooling tower "blow down"
- Process wastewater

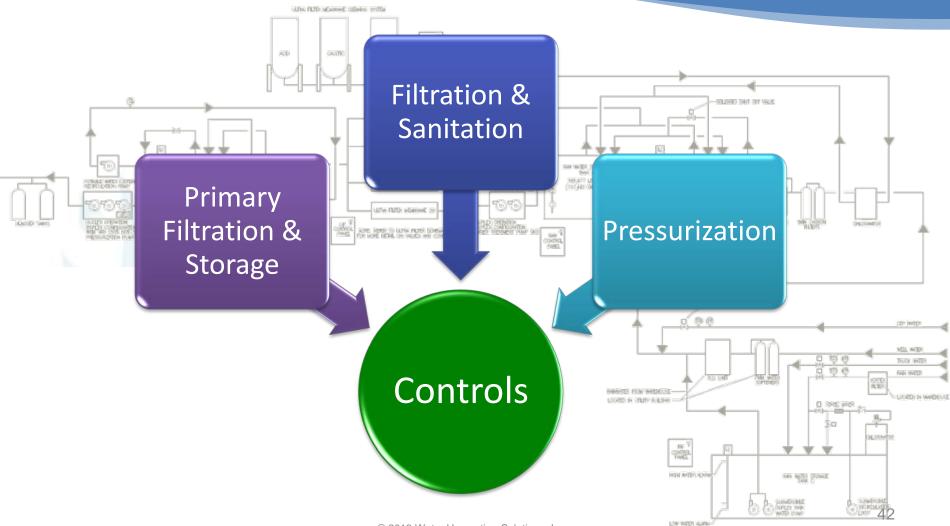
Potential Uses

- Landscape irrigation
- Toilet flushing
- Cooling tower "make-up"
- Green roof irrigation
- Boiler "make-up"
- Truck washing
- Washing machines

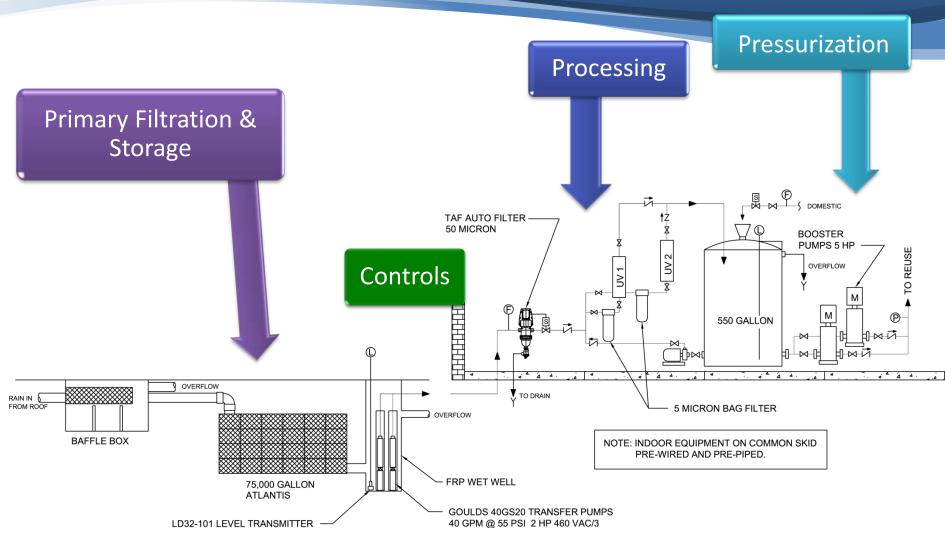

Scoping: Matching Supply to Demand

System Effectiveness Based on Recommended 20K Gallon Cistern

Projected Annual Averages Based On Past Six Years of Actual Daily Rainfall


Total Supply	Total Demand	Harvested Gallons Used	Municipal Gallons Used	Total Days Requiring Municipal Make-Up
450,947	266,043	186,300	79,743	42

Projected Monthly Supply & Demand

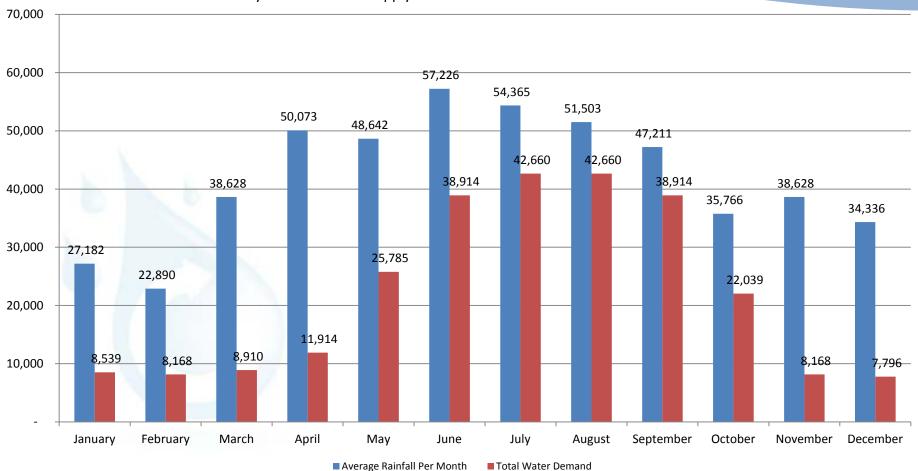

41

System Components are Customized to Each Project

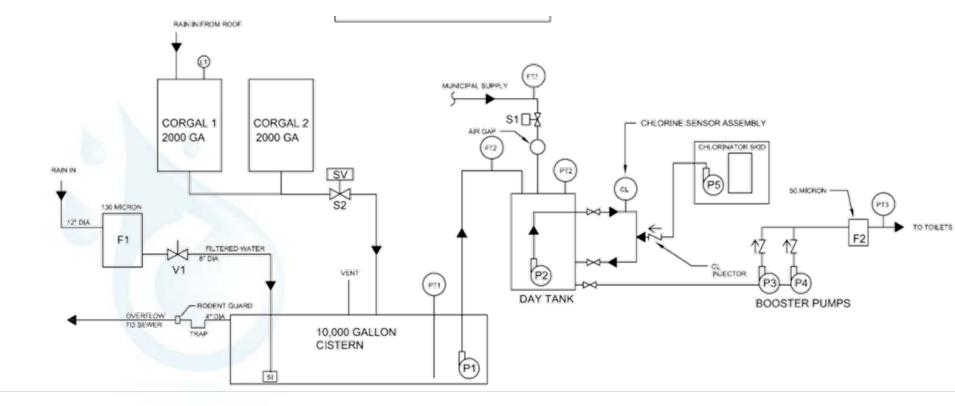
© 2013 Water Harvesting Solutions, Inc.

Typical System Design

Engineered Designs are Transformed into Functional Systems


Eample: Fields Volvo "World's Greenest Volvo Dealership"

Fields Volvo


Project:	Field's Volvo
Location:	Northfield, IL.
Customer:	Dan Fields
Engineers:	JDR Engineering, Madison, WI
System Type:	Rooftop rainwater for irrigation and toilet flushing
Considerations:	Marketing value as "World's Greenest Volvo Dealership, " LEED Silver
Storage:	10,000 gallon Atlantis Raintank 4,400 gallon CorGal steel tanks
Sanitation:	Chlorine (Calcium Hypochlorite)
Projected Annual Water Savings:	265,000 gallons
Commissioning Date:	February 1, 2011

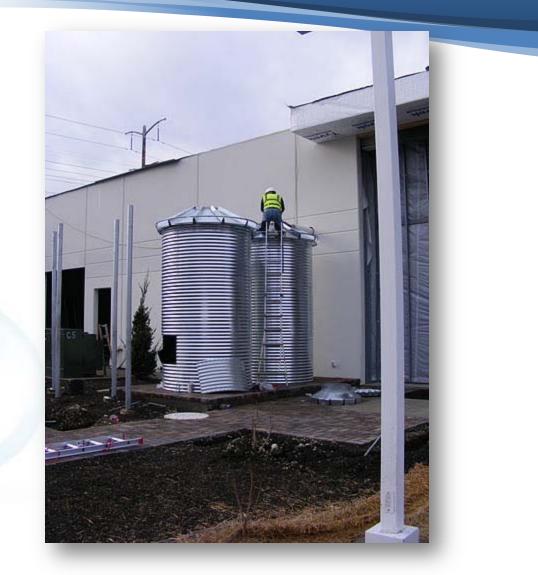
Supply & Demand

Analysis of Rainwater Supply & Demand - Fields Volvo Northfield

System Schematic

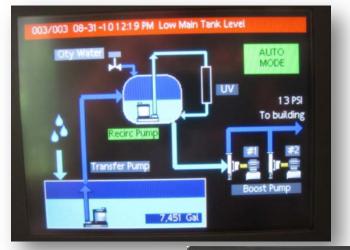
Atlantis Rain Tank Installation

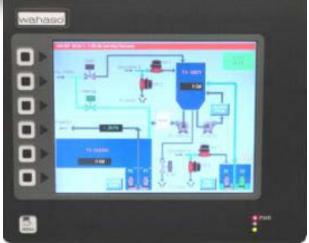
All Tank Sections Installed

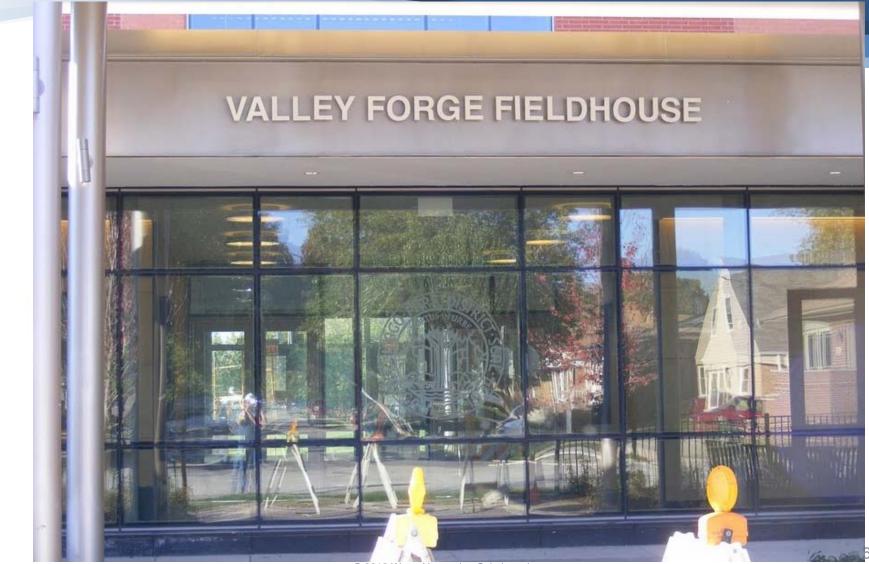

Compacted Sand Layer Between Tanks and Rubber Liner

Site Restored To Grade Level With Dirt Top Layer

Two 2,000 Gallon CorGal Tanks Installed




Processing Skid

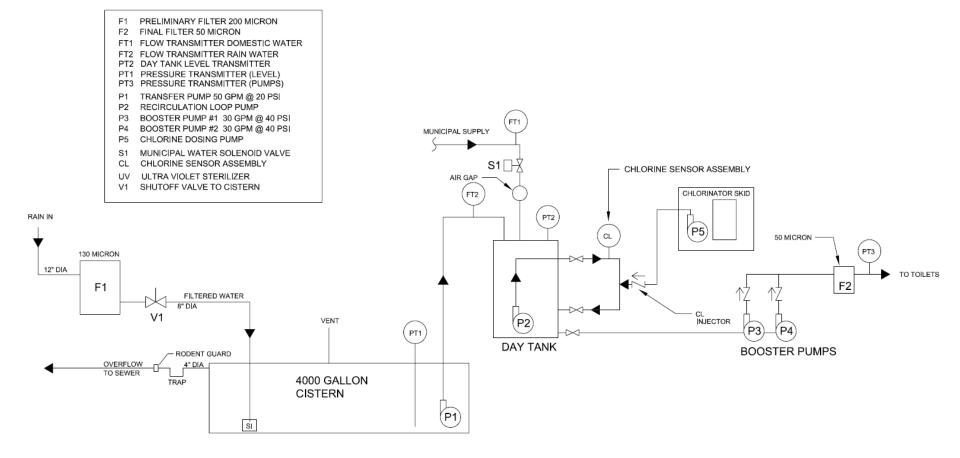

Control Panel Monitors and Controls 24/7

Chicago Parks District

© 2012 Water Harvesting Solutions, Inc.

Valley Forge Field House

Project:	Valley Forge Field House
Location:	Chicago, IL
Customer:	Chicago Parks District
Engineers:	Building Systems Engineering L.L.C.
System Type:	Rooftop rainwater for toilet flushing
Considerations:	Minimize stormwater run-off
Storage:	4,200 gallon Atlantis Raintank
Sanitation:	Chlorine (Calcium Hypochlorite)
Projected Annual Water Savings:	65,000 gallons
Commissioning Date:	November, 2010


Demand Analysis

Toilet Demand	Persons	Flushes	Occupants
Flushes Per Person Per Day			
Staff	Ľ.	5 4	20.0
Visitors	170) 1	170.0
Total Flushes Per Day			190.0
Number of Persons			71.0
Percentage Male			50%
Flushes Per Day Use			190.0
Male Urinal Use			75%
Flushes Per Week By Fixture	Toilets	Urinals	Total
	119	71	190
GPF	1.6	5 1.0	
Total Gallons For Flushing Per Day of Use	190.00	71.25	261

Supply Analysis

Rainwater Calculator - Chicago Fi	eld House											
Supply & Demand Analysis												
Rooftop Rainwater to Flush Toilets	Annual Ave	rage	January	February	March	April	May	June	July	August	September	October
Average precipitation for Chicago, IL	35.30		1.70	1.40	2.70	3.60	3.20	3.80	3.60	4.10	3.50	2.60
Building Use Days		250	20		22	2 21		21	22		. 20	21
Sub-Calculation - Area of roof in square feet),270	10,270	10,270	10,270	10,270	10,270	10,270	10,270	10,270	10,270	10,270
Gross Gallonage	225	5,993	10,884	8,963	17,286	,	20,487	24,328	23,047	26,249	· · · ·	16,645
Discount for Evaporation, system flush		15%	15%	15%	15%		15%	15%	15%	15%		15%
Rooftop Rainwater Available (In Gallons)	192	2,094	9,251	7,618	14,693	19,590	17,414	20,679	19,590	22,311	· · · ·	14,149
Rainfall Events		126	11	9	13		11	10	10	9		9
Rain Per Event	:	1,525	841	846	1,130	1,507	1,583	2,068	1,959	2,479	1,905	1,572
Demand for Toilet Flushing	65	5,313	5,225	4,964	5,748	5,486	5,748	5,486	5,748	5,486	5,225	5,486
	25,000				Analys	is of Rainwa	ter Supply 8	k Demand -	Chicago Field Ho	use		
									2	2,311		
								20,679				
	20,000				19,5	90		20,075	19,590			
	20,000 -										19,046	
						17	7,414					
				14	,693							
	15,000 -			14	,095				_			14,149
	10,000 -	9,25	1					_			_	_
			7,61	8								
			5,225	4,964	5,748	5,486	5,748	5,486	5,748	5,486	5,225	5,48(
	5,000 -											
	1											
		Jan	uary Feb	ruary	March	April	May	June	July	August	September	October 9
	-		, .				Average Rainfall		Toilet Flushing Deman	-		9

System Schematic

Processing Skid

Controls

• System logs & reports

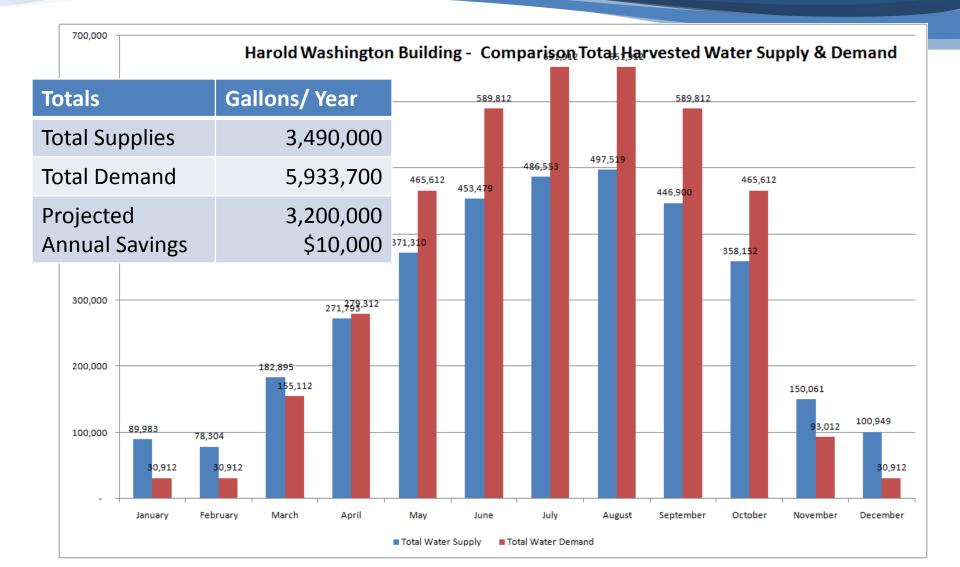
- Water available in cistern
- Total water saved, municipal water make-up required.
- Pump status
- Chlorine levels

Installed System

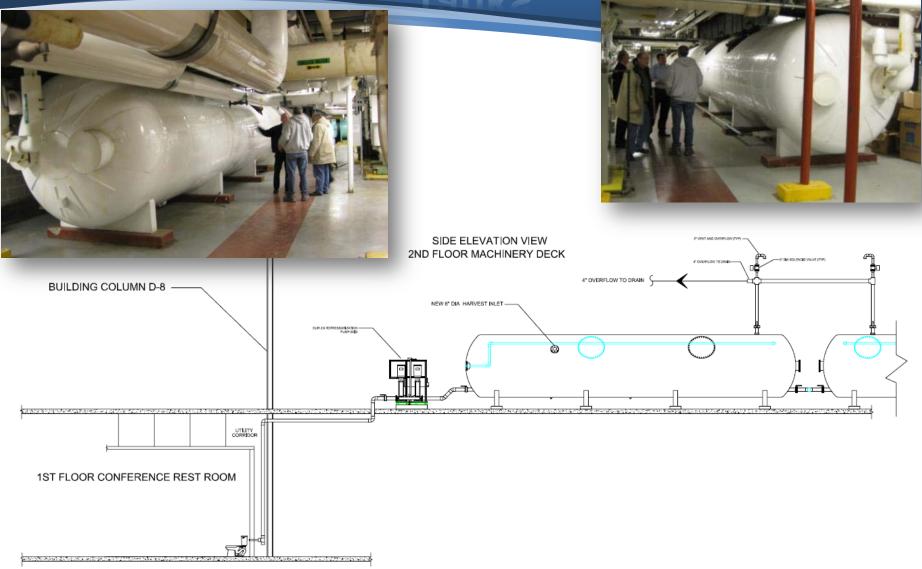
Harold Washington Social Security Building - Chicago

Harold Washington Social Security Building

Project:	Harold Washington Building
Location:	600 W. Madison Street, Chicago, IL
Customer:	Government Services Administration
Engineers:	
System Type:	Multi-Source, Multi-Use
Considerations:	Existing tanks, Utility floor access
Storage:	4 X 8,000 Gallon Re-Commissioned Steel Tanks
Sanitation:	Chlorine (Calcium Hypochlorite)
Projected Annual Water Savings:	3,220,000 gallons
Commissioning Date:	September, 2009


Multiple Supplies Identified -Condensate was the Driver

	600,000 -				Ha	rold V	Vashiı	ngton B	uilding	- Harves	sted Wate	er Suppl	у	
Supplies			Gallon	s/ Year										
Rooftop Rainv	vater		-	775,000	0									
Groundwater	Ejector		(6 7 5,000	0									
Cooling Conde	ensate		2,0	040,00	0			T				_		
Total Supplies			3,4	490,00	0									
	200,000 - 100,000 -													
		January	February	March Rooftop Rair	April		May or Pit Sumn	June	July	August	September Isate Supply	October	November	December
									tor Fit Willter	= conden	sare aubbiy			


Cooling Towers Drove Demand

700,000	Harold Washington Building: Harvested Water Demand										
Demand		Gallons/ Year									
Irrigation		54,180									
Boiler Make-Up		146,000									
Toilet Flushing		82,940									
Humidifier Make-Up		1,844,640									
Cooling Tower Make-	Jp	3,805,500									
Total Demand		5,933,700									
200,000											
	Januar	y February March	April May Boiler Make-Up	June July	ٰ August Make-Up	September	October	November December			

A Good Match of Supply & Demand

Four 8,000 Gallon Decommissioned Tanks

Pressurization & Chlorinator

System Controls

Control system monitors all activities and tracks and displays water harvested and applied

Water Harvesting

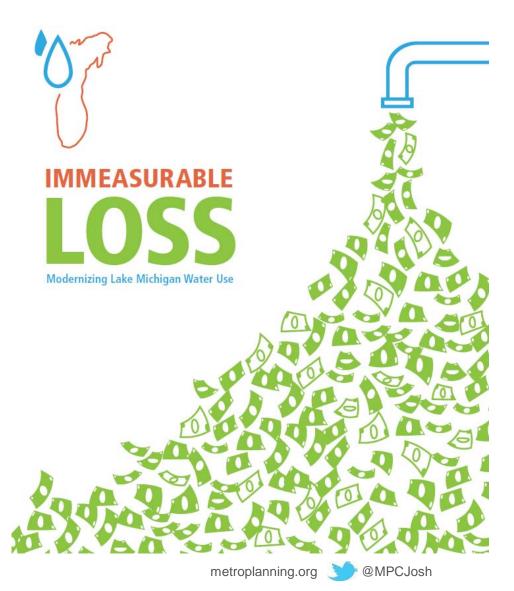
For Commercial & Institutional Buildings

Metropolitan **Planning** Council Illinois Plumbing Code Revisions

Josh Ellis, Program Director June 26, 2013 DuPage Water Commission

Adapting to Lake Michigan Water Loss Permit Condition Changes

Josh Ellis, Metropolitan Planning Council John VanArsdel, AWWA

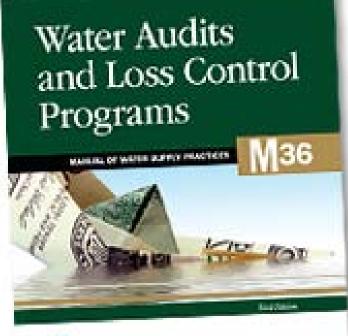


DuPage Water Commission is Preserving Every Drop

Changes to the Lake Michigan permit conditions

Josh Ellis, Program Director, Metropolitan Planning Council June 26, 2013 DuPage Water Commission

Water Audits: AWWA method compared to LM0-2


John H. Van Arsdel, Vice President

Water Audit Process: A Top Down Approach

- Advantage: quickly pulls together data and information that is readily available
- Disadvantage: for most water utilities, incomplete or inaccurate data limits the *validity* of the top-down water audit

Water Audit and M36

- In April, 2009
 Manual 36 e
 Programs
- Manual was Loss Control
- Concurrently audit softwar
- The software their website

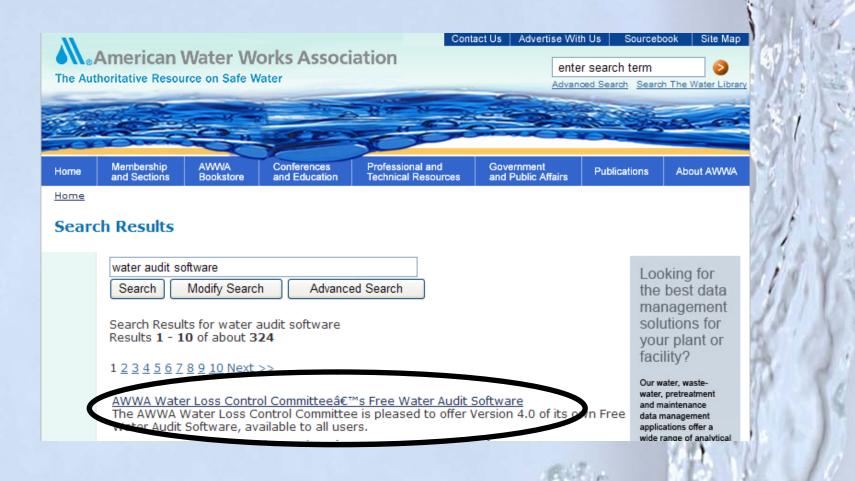
edition of Control

of the Water

eloped water

AWWA on

M36 3rd Edition Table of Contents


- Chapter 1 Introduction: Auditing Water Supply Operations and Controlling Losses
- Chapter 2 Conducting the Water Audit
- Chapter 3 Identifying and Controlling Apparent Losses
- Chapter 4 Understanding Real Losses: The Occurrence and Impacts of Leakage
- Chapter 5 Controlling Real Losses: Leakage and Pressure Management
- Chapter 6 Planning and Sustaining the Water Loss Control Program
- Chapter 7 Considerations for Small Systems
- Glossary of Terms and Definitions for Water Loss Control
- Appendix Blank Forms, Assessing Water Resource Management, AWWA WLCC Free Water Audit Software, Case Studies

Start here Move this direction

		Water Exported		Billed Authorized Consumption	Revenue Water	Billed Water Exported
Own			Authorized Consumption			Billed Metered Consumption
Source	5 Total System	stem aput llow for for supplied				Billed Unmetered Consumption
	Input			Unbilled Authorized		Unbilled Metered Consumption
	(allow			Consumption	Non- ∠Revenue	Unbilled Unmetered Consumption
	for known		d Water Losses	Apparent Losses		Unauthorized Consumption
	errors)					Customer Metering & Data Inaccuracies
Water Importe	d			Real Losses	Water	Leakage on Mains
						Leakage on Service Lines (before the meter)
						Leakage & Overflows at Storage

C. L. P.

Follow the search results

• Follow the link

Contact Lts Advertise With Lts Sourcebook Site Map

E.L.

AWWA Water Loss Control Committee's Free Water Audit Software - WaterWiser - Professional and Technical Resources - AWWA
Amerihttp://www.awwa.org/Resources/WaterLossControl.cfm?ItemNumber=48511&navItemNumber=48158

The Authoritative Resource on Safe Water

Advanced Search Search The Water Library

Membership AWWA Conferences Professional and Government About AWWA Home Publications and Sections Bookstore Technical Resources and Public Affairs and Education SHARE APRINT Home > Professional and Technical Resources > WaterWiser > Water Loss Control > AWWA Standards Free Water Audit Software AWWA Manuals ne How to Download the Water Audit Software Log In Work for Water Learn more about and download the Free Water Audit Software, in English t In Small Systems or French, upon accepting the User Agreement: Operator Assistance ENGLISH FRANCAIS Water Science Topics erLibrary Water:\Stats Center Surveys Partnership for Safe Water tap.org Utility Management

..... and accept

USE AGREEMENT

The Water Loss Control Committee's Water Audit Software (the "Software") you seek to download and/or use is made available and licensed only on the condition that you ("User") agree with American Water Works Association ("AWWA") to the terms and conditions set forth below:

PLEASE CAREFULLY READ THE TERMS OF THIS USE AGREEMENT. IF YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT, PLEASE CLICK "AGREED" AT WHICH TIME THE SOFTWARE WILL BE DOWNLOADED TO YOUR COMPUTER.

1. User shall only use the Software in the form that it is downloaded from AWWA's WaterWiser website. User may only utilize the Software as a tool to compile a basic audit of User's water supply operations in an effort to determine water supply efficiency. User shall not modify the Software or use the Software except as herein authorized. The license granted to User is non-transferable and normasignable. All rights not expressly granted by herein are reserved to AUWA and the owners of the Software.

 User shall use the Software solely for a lawful and ethical purpose. User shall not copy, alter, modify, obscure, or add to the Software, nor reverse engineer, decompile or attempt to obtain the source code to the Software. User shall not allow any third party to use or copy the Software.

3. The term of this Agreement shall commence on User's acceptance of this Agreement and download of the Software, and shall continue until terminated, with or without cause, by either party. Upon any termination, User shall promptly delete all electronic files of the Software from User's systems, and shall cease all uses of the Software.

4. Although the Software is provided to User free of charge, it is copyrighted and not in the public domain. User may use the Software solely in its internal business and towards water supply efficiency. Neither AWWA nor any other party makes, extends, or confirms any representations, implied or expressed, in connection with the Software. User shall not make or extend any representation or warranty in connection with the Software that in any manner impacts AWWA or the owners of the Software.

5. AWWA MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE SOFTWARE, WHICH IS MADE AVAILABLE AND LICENSED ON AN "AS IS, WHERE IS" BASIS. AWWA DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE MPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUALITY, ACCURACY, AND NON-INFRINGEMENT. USER ASSUMES ALL RISK AS TO DOWNLOADING AND USE OF THE SOFTWARE. IN NO EVENT WILL AWWA BE LIABLE FOR SPECIAL DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS OF PROFITS OR INABILITY TO USE THE SOFTWARE. EVEN IF AWWA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. USER'S ONLY REMEDY FOR ANY CAUSE OF ACTION ARISING HEREUNDER OR RELATED IN ANY MANNER TO THE SOFTWARE IS TO RETURN THE SOFTWARE AND DISCONTINUE ALL USES THEREOF.

6. User shall defend, Indemnity, and hold AWWA harmless from and against any costs, losses, labilities, damages, or penatiles, including attorneys' fees, arising from or related to any wrongful act or omission, any violation of the law or of any party's rights, or any breach or derogation of the terms of this Agreement by User or its employees, directors, officers, representatives or agents.

 This Agreement shall be construed under the laws of the state of Colorado without regard to its conflict of laws provisions. Any dispute involving this Agreement shall be exclusively resolved in the courts resident interview of Denver, Colorado. User hereby intervicably submits to the

..... and "SAVE AS"

A http://www.augua.org/filos	s/science/WaterLoss/WaterAudit.xls - Windows Internet Explorer provided by American Water ITS - 5/23							
	wa.org/files/science/WaterLoss/WaterAudit.xls							
	at Tools Data Go To Favorites Help							
New Tab Ctrl+T New Window Ctrl+N	g/files/science/WaterLoss/Water							
Open Ctrl+O	WWA Water Loss Control Committee (WLCC) Free Water Audit Software v4.1							
Save As								
Close Tab Ctrl+W	Loss Control Committee (WLCC) Free Water Audit Software v4.1							
Page Setup Print Ctrl+P	Copyright © 2010, American Water Works Association. All Rights Reserved. WAS v4.1							
Send +	heet-based water audit tool is designed to help quantify and track water losses associated with water and identify areas for improved efficiency and cost recovery. It provides a "top-down" summary water							
Import and Export	mat, and is not meant to take the place of a full-scale, comprehensive water audit format.							
Properties	contains several separate worksheets. Sheets can be accessed using the tabs towards the bottom of the							
Work Offline	g the buttons on the left below. Descriptions of each sheet are also given below.							
Exit	LIES THROUGHOUT: Value can be entered by user							
	Value calculated based on input data							
	These cells contain recommended default values							
Please begin by provi	iding the following information, then proceed through each sheet in the workbook:							
NAME OF CITY OR UTILI	ITY: COUNTRY:							
REPORTING YE	EAR: START DATE (MM/YYYY): END DATE (MM/YYYY):							
NAME OF CONTACT PERS								
DIFACE SELECT DEFEED	RED REPORTING UNITS FOR WATER VOLUME							
Click to advance to s								
CITCK to advance to s								
Instructions	The current sheet							
Reporting Worksheet	Enter the required data on this worksheet to calculate the water balance							
Water Balance	Hater Balance The values entered in the Reporting Worksheet are used to populate the water balance							
Grading Matrix	Grading Matrix Depending on the confidence of audit inputs, a grading is assigned to the audit score							
I Instructions Re	Instructions / Reporting Worksheet / Water Balance / Grading Matrix / Service Connection Diagram / Definitions / < >>							
iaves this document as a file.								
🛃 start 🔰 🙆 🏉 오	🔋 🕕 Russell Ti 💿 Microsoft 🖉 http://w 😵 unktiled 👌 🔊 🛠 抽餐口 🛒 決 建容 悠 冬 為 🕅 🖉 💭 🎝 11:55 AM							

Completing Your First Water Audit

- Read the instructions provided in the software
- Follow the tabs

Instructions	The current sheet
Reporting Worksheet	Enter the required data on this worksheet to calculate the water balance
Water Balance	The values entered in the Reporting Worksheet are used to populate the water balance
Grading Matrix	Depending on the confidence of audit inputs, a grading is assigned to the audit score
Service Connections	Diagrams depicting possible customer service connection configurations
Definitions	Use this sheet to understand terms used in the audit process
Loss Control Planning	Use this sheet to interpret the results of the audit validity score and performance indicators

Title Page

THE FOLLOWING KEY APPLIES THROUGHOUT:

Value can be entered by user

Value calculated based on input data

These cells contain recommended default values

B.I.

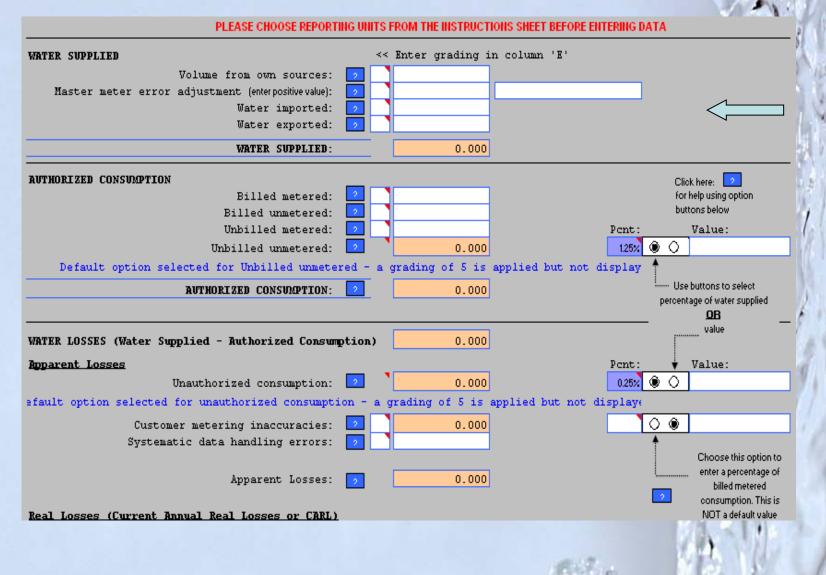
Please begin by providing the following information, then proceed through each sheet in the workbook:

NAME OF CITY OR UTILITY:		COUNTRY:	
REPORTING YEAR:	START DATE(MM/YYYY):	END DATE(MM/YYYY)	:
NAME OF CONTACT PERSON:	E-MAIL:		TELEPHONE:
			Ext.
PLEASE SELECT PREFERRED R	EPORTING UNITS FOR WATER VOLUME:		
Click to advance to sheet		Click here: ? for help about	units and conversions

What data do I need?

System input including

- Purchased water
- Transferred water, imported and exported
- Sales
 - Metered, billed and unbilled
 - Unmetered, billed and unbilled
- Estimate of unauthorized consumption
- Estimate of meter error or inaccuracy
- Estimate of data handling errors


What data do I need?

- Physical parameters of the water system

- Length of mains
- Number of service connections
- Average length of customer service line
- Average system operating pressure
- Financial data on the system
 - Annual operating costs
 - Retail cost per unit
 - Marginal cost per unit

Where is the data entered?

- Look for the white boxes in the spreadsheet

Where is the data entered?

- Look for the white boxes in the spreadsheet

SYSTEM DATA			
Length of mains: Number of <u>active AND inactive</u> service connections: Connection density:	ections: 7		
<u>Average</u> length of customer service line:	2	(pipe length between curbstop and customer meter or property boundary)	0
Average operating pressure:	2		
COST DATA			
Total annual cost of operating water system:		\$/Year	1.7
Customer retail unit cost (applied to Apparent Losses):			
Verieble production cost (applied to Beall osses)		\$/	10

– That was easy, but what about those small white boxes?

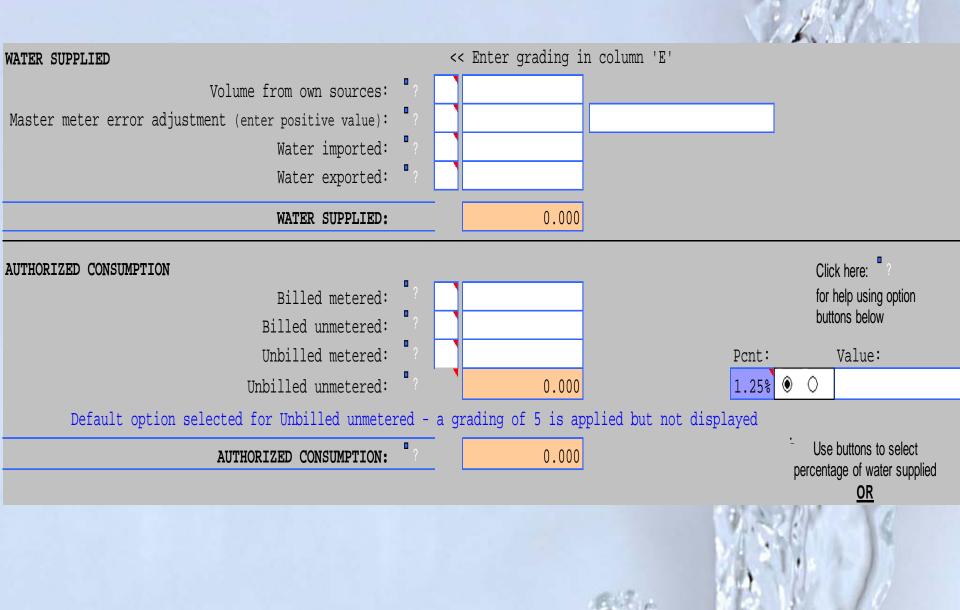
Grading the data: an example

- How many miles of mains are in the system?

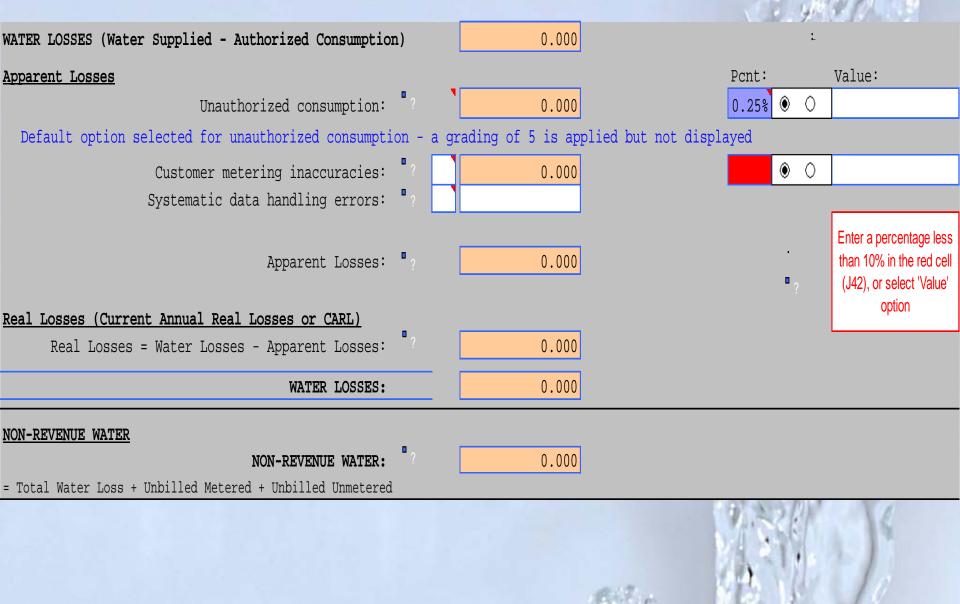
Length of mains:

miles

Poorly assembled and maintained paper as-built records of existing water main installations makes accurate determination of system pipe length impossible. Length of mains is guesstimated.
 Paper records in poor condition (no annual tracking of installations & abandonments). Poor procedures to ensure that new water mains installed by developers are accurately documented.
 Conditions between 2 and 4
 Sound policy and procedures for permitting and documenting new water main installations, but gaps in management result in a uncertain degree of error in tabulation of mains length.
 Conditions between 4 and 6
 Sound policy and procedures exist for permitting and commissioning new water mains. Highly accurate paper records with regular field validation; or electronic records and asset management system in good condition. Includes system backup.


7. Conditions between 6 and 8

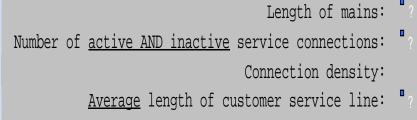
8. Sound policy and procedures exist for permitting and commissioning new water mains. Electronic recordkeeping and asset management system are used to store and manage data.


9. Conditions between 8 and 10

10. Sound policy exists for managing water mains extensions and replacements. Geographic Information System (GIS) data and asset management database agree and random field validation proves truth of databases.

Data Input

Data Input



Data Input

SYSTEM DATA

(pipe length between curbstop and customer meter or property boundary)

Average operating pressure:

COST DATA

Total annual cost of operating water system: Customer retail unit cost (applied to Apparent Losses): Variable production cost (applied to Real Losses):

R.J.C.

Calculated Performance Indicators

Financial Indicators

Non-revenue water as percent by volume of Water Supplied: Non-revenue water as percent by cost of operating system: Annual cost of Apparent Losses: Annual cost of Real Losses:

Operational Efficiency Indicators

•

Apparent Losses per service connection per day:

Real Losses per service connection per day*:

Real Losses per length of main per day*:

A. 19.

Real Losses per service connection per day per meter (head) pressure:

7 Unavoidable Annual Real Losses (UARL):

From Above, Real Losses = Current Annual Real Losses (CARL):

Infrastructure Leakage Index (ILI) [CARL/UARL]:

* only the most applicable of these two indicators will be calculated

Grading the data: an example

SYSTEM DATA

- Length of mains:
- Number of <u>active AND inactive</u> service connections: ⁶ Connection density:
 - Average length of customer service line:

Average operating pressure: ?

Poorly assembled and maintained paper as-built records of existing water main installations makes accurate determination of system pipe length impossible. Length of mains is guesstimated. Paper records in poor condition (no annual tracking of installations & abandonments). Poor procedures to ensure that new water mains installed by developers are accurately documented.

3. Conditions between 2 and 4

4. Sound policy and procedures for permitting and documenting new water main installations, but gaps in management result in a uncertain degree of error in tabulation of mains length.

8

8

8

8

105.0

10,235

97

70.0

65.0

5. Conditions between 4 and 6

6. Sound policy and procedures exist for permitting and commissioning new water mains. Highly accurate paper records with regular field validation; or electronic records and asset management system in good condition. Includes system backup.

7. Conditions between 6 and 8

8. Sound policy and procedures exist for permitting and commissioning new water mains. Electronic recordkeeping and asset management system are used to store and manage data.

9. Conditions between 8 and 10

10. Sound policy exists for managing water mains extensions and replacements. Geographic Information System (GIS) data and asset management database agree and random field validation proves truth of databases.

Audit Validity Score

WATER AUDIT DATA VALIDITY SCORE:

*** YOUR SCORE IS: 71 out of 100 ***

A weighted scale for the components of consumption and water loss is included in the calculation of the Water Audit Data Validity Score

PRIORITY AREAS FOR ATTENTION:

Based on the information provided, audit accuracy can be improved by addressing the following components:

1: Billed metered

2: Unauthorized consumption

3: Systematic data handling errors

For more information, click here to see the Grading Matrix worksheet

B.Z.

Making the Grade

Water Loss Control Planning Guide							
	Water Audit Data Validity Level / Score						
Functional Focus Area	Level I (0-25)	Level II (26-50)	Level III (51-70)	Level IV (71-90)	Level V (91-100)		
Audit Data Collection	Launch auditing and loss control team; address production metering deficiencies	Analyze business process for customer metering and billing functions and water supply operations. Identify data gaps.	Establish/revise policies and procedures for data collection	Refine data collection practices and establish as routine business process	Annual water audit is a reliable gauge of year-to-year water efficiency standing		
Short-term loss control	Research information on leak detection programs. Begin flowcharting analysis of customer billing system	Conduct loss assessment investigations on a sample portion of the system: customer meter testing, leak survey, unauthorized consumption, etc.	Establish ongoing mechanisms for customer meter accuracy testing, active leakage control and infrastructure monitoring	Refine, enhance or expand ongoing programs based upon economic justification	Stay abreast of improvements in metering, meter reading, billing, leakage management and infrastructure rehabilitation		
Long-term loss control		Begin to assess long-term needs requiring large expenditure: customer meter replacement, water main replacement program, new customer billing system or Automatic Meter Reading (AMR) system.	Begin to assemble economic business case for long-term needs based upon improved data becoming available through the water audit process.	Conduct detailed planning, budgeting and launch of comprehensive improvements for metering, billing or infrastructure management	Continue incremental improvements in short-term and long-term loss control interventions		
Target-setting			Establish long-term apparent and real loss reduction goals (+10 year horizon)	Establish mid-range (5 year horizon) apparent and real loss reduction goals	Evaluate and refine loss control goals on a yearly basis		
Benchmarking			Preliminary Comparisons - can begin to rely upon the Infrastructure Leakage Index (ILI) for performance comparisons for real losses (see below table)	Performance Benchmarking - ILI is meaningful in comparing real loss standing	Identify Best Practices/ Best in class - the ILI is very reliable as a real loss performance indicator for best in class service		

1844

Grading the system

Performance Indicators

- NRW% by volume
- Volumetric losses
- Losses per connection per day
- Losses per mile of main
- Infrastructure Leakage Index (ILI)

Grading the system

PERFORMANCE INDICATORS

Financial Indicators

Non-revenue water as percent by volume of Water Supplied: Non-revenue water as percent by cost of operating system: Annual cost of Apparent Losses: Annual cost of Real Losses:

Operational Efficiency Indicators

Apparent Losses per service connection per day:

Real Losses per service connection per day*:

Real Losses per length of main per day*:

Real Losses per service connection per day per meter (head) pressure:

Unavoidable Annual Real Losses (UARL):

From Above, Real Losses = Current Annual Real Losses (CARL):

Infrastructure Leakage Index (ILI) [CARL/UARL]:

ILI= CARL / UARL

0.000

<u>CARL</u>

Real Losses (Current Annual Real Losses or CARL)

Real Losses = Water Losses - Apparent Losses:

<u>UARL</u>

```
Nc = number of service connections
```

- Lc = total length of customer service lines (miles or km)
 - = Nc multiplied by the average distance of customer service line, Lp (miles or km)

Click to see Service Connection I

1825

P = Pressure (psi or metres)

Interpreting the Grades: ILI

(74	General Guidelines for Setting a Target ILI (without doing a full economic analysis of leakage control options)							
Target ILI Range	Financial Considerations	Operational Considerations	Water Resources Considerations					
1.0 - 3.0	Water resources are costly to develop or purchase; ability to increase revenues via water rates is greatly limited because of regulation or low ratepayer affordability.	Operating with system leakage above this level would require expansion of existing infrastructure and/or additional water resources to meet the demand.	Available resources are greatly limited and are very difficult and/or environmentally unsound to develop.					
>3.0 -5.0	Water resources can be developed or purchased at reasonable expense; periodic water rate increases can be feasibly imposed and are tolerated by the customer population.	infrastructure capability is	Water resources are believed to be sufficient to meet long-term needs, but demand management interventions (leakage management, water conservation) are included in the long-term planning.					
>5.0 - 8.0	Cost to purchase or obtain/treat water is low, as are rates charged to customers.		Water resources are plentiful, reliable, and easily extracted.					
Greater than 8.0	Although operational and financial considerations may allow a long-term ILI greater than 8.0, such a level of leakage is not an effective utilization of water as a resource. Setting a target level greater than 8.0 - other than as an incremental goal to a smaller long-term target - is discouraged.							
If the calculated Infrastructure Leakage Index (ILI) value for your system is 1.0 or less, two possibilities exist. a) you are maintaining your leakage at low levels in a class with the top wor performers in leakage control. b) A portion of your data may be flawed, causing your losses to be of understated. This is likely if you calculate a low ILI value but do not employ extensive leakage con practices in your operations. In such cases it is beneficial to validate the data by performing file measurements to confirm the accuracy of production and customer meters, or to identify any other pot sources of error in the data.								

Billion

UARL considerations

The UARL is a theoretical reference value representing the technical low limit of leakage that could be achieved if all of today's best technology could be successfully applied. It is a key variable in the calculation of the Infrastructure Leakage Index (ILI). It is not necessary that water utilities set this level as the target level of leakage, unless water is unusually expensive, scarce or both.

NOTE: The UARL calculation has not yet been fully proven as effective for very small, or low pressure water distribution systems. If,

in gallons per day:

(Lm x 32) + Nc < 3000 or

P <35psi

in litres per day:

(Lm x 20) + Nc < 3000 or

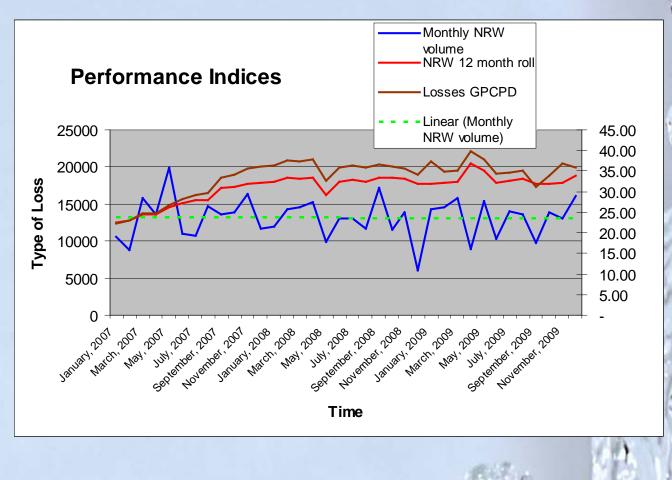
P < 25m

then the calculated UARL value may not be valid. The software does not display a value of UARL or ILI if either of these conditions is true.

Smaller System Considerations

Operational Efficiency Indicators

Apparent Losses per service connection per day:


Real Losses per service connection per day*:

Real Losses per length of main per day*:

Real Losses per service connection per day per meter (head) pressure:

Interpreting the Grades: NRW volume (mo & roll), NRW%

Follow the trends

Start here Move this direction

		Water Exported		Billed Authorized Consumption	Revenue Water	Billed Water Exported
Own			Authorized Consumption			Billed Metered Consumption
Source	5 Total System	stem aput llow for for supplied				Billed Unmetered Consumption
	Input			Unbilled Authorized		Unbilled Metered Consumption
	(allow			Consumption	Non- ∠Revenue	Unbilled Unmetered Consumption
	for known		d Water Losses	Apparent Losses		Unauthorized Consumption
	errors)					Customer Metering & Data Inaccuracies
Water Importe	d			Real Losses	Water	Leakage on Mains
						Leakage on Service Lines (before the meter)
						Leakage & Overflows at Storage

C. L. P.

Water Balance

AWWA WLCC	Free Water A	Audit Softwa	re: <u>Water Balance</u>	Water Audit Report For:	Report Yr:		
	Copyright © 2010, America	n Water Works Association	. All Rights Reserved. WAS v4.2	City of Lake Forest, Illinois	2010		
	Water Exported 6.534			Billed Water Exported			
			Billed Authorized Consumption	Billed Metered Consumption (inc. water exported) 1,089.691	Revenue Water		
Own Sources		Authorized Consumption	1,089.691	Billed Unmetered Consumption	1,089.691		
known errors)		1,118.911	Unbilled Authorized Consumption	Unbilled Metered Consumption 28.782	Non-Revenue Water (NRW)		
1,314.455			29.220	Unbilled Unmetered Consumption 0.438			
	Water Supplied			Unauthorized Consumption	218.230		
	1,307.921		Apparent Losses 17.143	0.100 Customer Metering Inaccuracies 17.033			
				Systematic Data Handling Errors			
Water Imported	-	Water Losses 189.010		0.010 Leakage on Transmission and/or Distribution Mains			
			Real Losses	Not broken down			
0.000			171.867	Leakage and Overflows at Utility's Storage Tanks			
				Not broken down Leakage on Service Connections			
				Not broken down			

Bellin.

LMO2 Form

Illinois Department of Natural Resources

One Natural Resources Way Springfield, Illinois 62702-1271 http://dnr.state.il.us Pat Quinn, Governor Marc Miller, Director

Office of Water Resources, Michael A. Bilandic Building, 160 N. LaSalle St., S-700, Chicago, IL 60601 Office: 312/793-3123 Fax: 312/793-5968

2011 Annual Water Use Audit Form (LMO-2)

PC 19

This form must be completed by all Category IA and IIB Permittees for each annual water use accounting year running from October 1st through September 30th. This form must be submitted to the Department by January 9, 2012.

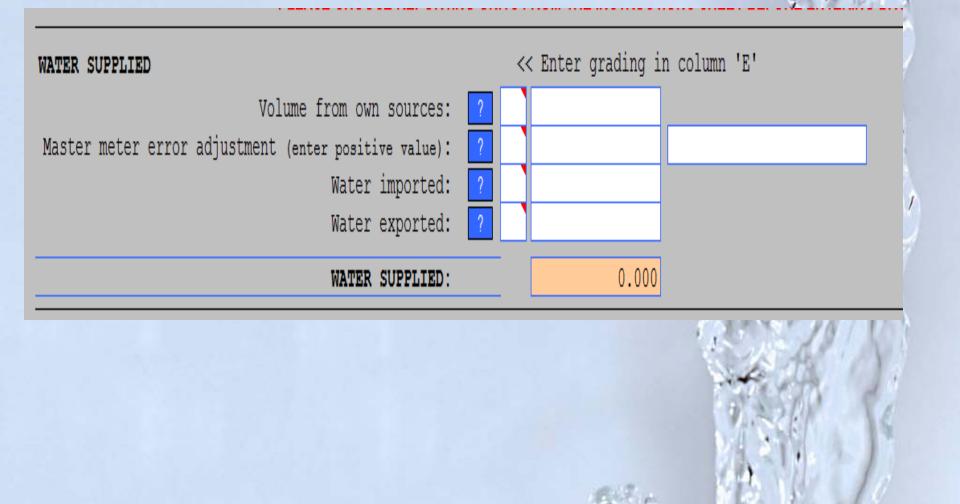
LMO2 Form

Section I -	General Information	
Name, addr	ess and phone number of Permittee:	
County:	:	
	ess and phone number of the contact person for the Permittee:	
	e-mail address	
Authorized Of	fficial	
Title:		
Date:		
Please prov	vide leak survey information and population estimates for the last yea	r.
Population:	Number of existing households:	
		12 15 10

LMO2 Form

A. Pumpage Data

Water bought or received from the following distribution systems:

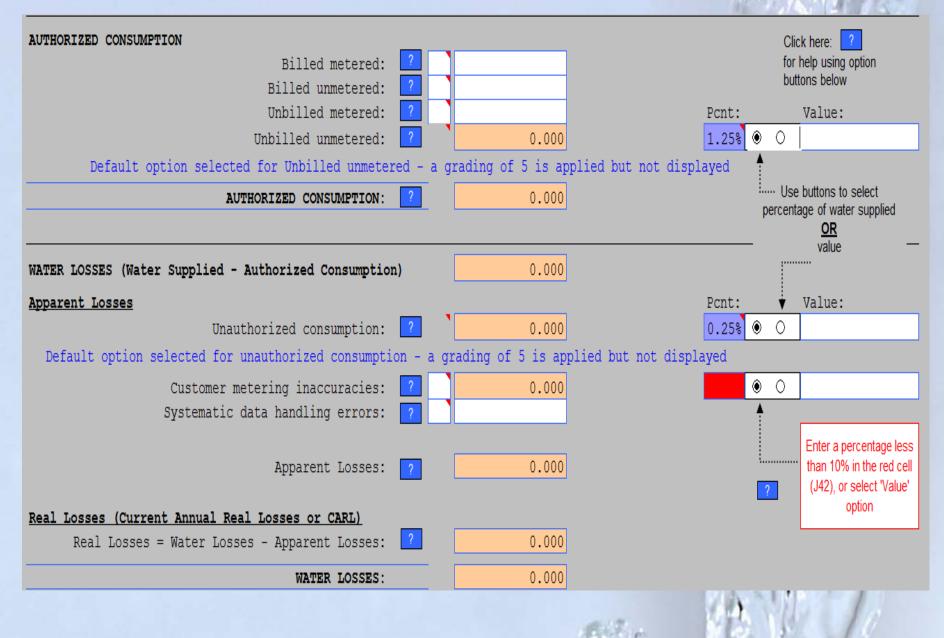

1.	Lake Michigan Pumpage	mgd
2.	Shallow Aquifer Pumpage	mgd
3.	Deep Aquifer Pumpage	mgd
4.	Total Pumpage (add lines 1, 2 & 3) 0.000	mgd
5.	Water Treatment Use	mgd
6.	Gross Annual Pumpage (subtract line 5 from line 4) 0.000	mgd

Water sold or provided to any other distribution systems (enter the name of each system and the amount sold or provided to that system on lines 7 through 12). If additional lines are required, attach an additional sheet listing each system and amount.

7	mgd
8	mgd
9	mgd
10	mgd
11	mgd
12	mgd
13. Total (add lines 7-12 and any additional amounts)	0.000 mgd
14. Net Annual Pumpage (subtract line 13 from line 6)	<u>0.000</u> mgd

Billin

Volume inputs


LMO2 Form

B. Uses	Metered	Unmetered	Total	
15. Residential			0.000	mgd
16. Commercial and Manufacturing			0.000	mgd
17. Municipal			0.000	mgd
18. Construction			0.000	mgd
19. Total Uses (add Total lines 15 through 18)	0.000	0.000	0.000	mgd
20. Percentage of Total Use to Net Annual Pumpage				
(divide line 19 by line 14 and multiply by 100)			#DIV/0!	%
C. Hydrant Uses				
21. Firefighting and Training				mgd
22. Water Main Flushing				mgd
23. Sewer Cleaning				mgd
24. Street Cleaning				mgd
25. Construction				mgd
26. Other (attach explanation)				mgd
27. Total Hydrant Use (add lines 21 through 26)			0.000	mgd
Section II - Water Use Audit (continued)				

28. Percentage of Hydrant Use to Net Annual Pumpage	
(divide line 27 by line 14 and multiply by 100)	#DIV/0! %
29. Department allowed maximum for Hydrant Use	1.0 %
30. Excessive hydrant use (subtract line 29 from line 28). If the percentage	
is greater than 0.0, attach an explanation. [see Rule 730.307 (e)]	#DIV/0! %

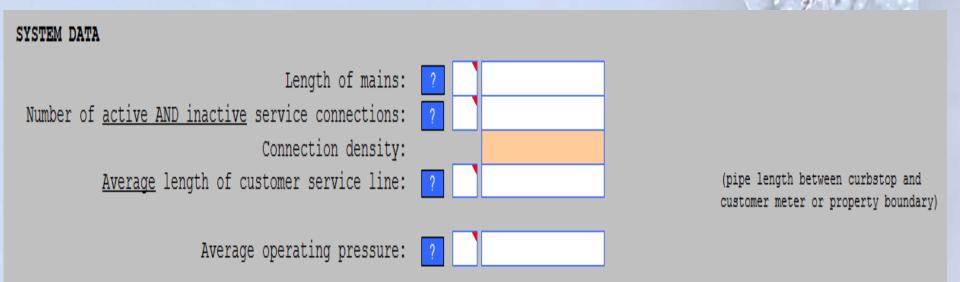
Billin.

Uses and Losses

LMO2 Reporting form

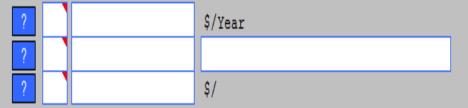
Complete the following calculations to determine your maximum unavoidable leakage. Enter the appropriate amounts in the space provided.

A. Cast Iron Pipes With Lead Joints

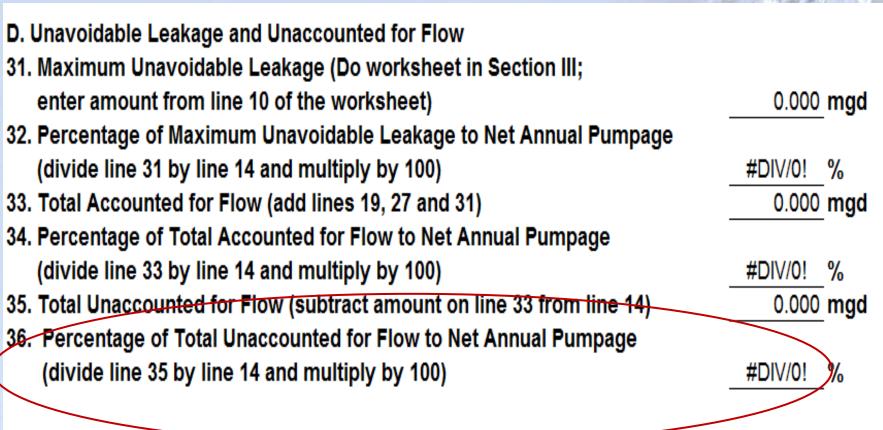

	Miles of	Leakage	Maximum	
Age of Pipes	Pipe	Rate	Unavoidable Leakage	
1. 60 yrs. or greater		x 3,000 g/d/mi =	0	g/d
2. 40-60 yrs.		x 2,500 g/d/mi =	0	g/d
3. 20-40 yrs.		x 2,000 g/d/mi =	0	g/d
4. 20 yrs. or less		x 1,500 g/d/mi =	0	g/d

B. All Other Types of Pipes and Joints

	Miles of	Leakage	Maximum			
Age of Pipes	Pipe	Rate	Unavoidable Leakage			
5. 60 yrs. or greater		x 2,500 g/d/mi =	0	g/d		
6. 40-60 yrs.		x 2,000 g/d/mi =	0	g/d		
7. 20-40 yrs.		x 1,500 g/d/mi =	0	g/d		
8. 20 yrs. or less		x 1,000 g/d/mi =	0	g/d		
9. Total Miles	0.0	Total Leakage	0	g/d		
10. Total Maximum Unavoidable Leakage, in mgd						
(divide total leakage on line 9 by 1,000,000)			0.0	00 mgd		
(Enter this amount on line 31 of "Section II - Water Use Audit)						


Billion

System Data and Cost Data


COST DATA

Total annual cost of operating water system: Customer retail unit cost (applied to Apparent Losses): Variable production cost (applied to Real Losses):

B. L.

LMO2 Form

Please Check Your Calculations

Berlin

The sum of lines 33 and 35 should equal line 14. If they do not equal, recheck your calculations. The sum of lines 34 and 36 should equal approximately 100%. If not, check calculations.

ILI= CARL / UARL

0.000

<u>CARL</u>

Real Losses (Current Annual Real Losses or CARL)

Real Losses = Water Losses - Apparent Losses:

<u>UARL</u>

```
Nc = number of service connections
```

- Lc = total length of customer service lines (miles or km)
 - = Nc multiplied by the average distance of customer service line, Lp (miles or km)

Click to see Service Connection I

1825

P = Pressure (psi or metres)

Grading the system

PERFORMANCE INDICATORS

Financial Indicators

Non-revenue water as percent by volume of Water Supplied: Non-revenue water as percent by cost of operating system: Annual cost of Apparent Losses: Annual cost of Real Losses:

Operational Efficiency Indicators

Apparent Losses per service connection per day:

Real Losses per service connection per day*:

Real Losses per length of main per day*:

Real Losses per service connection per day per meter (head) pressure:

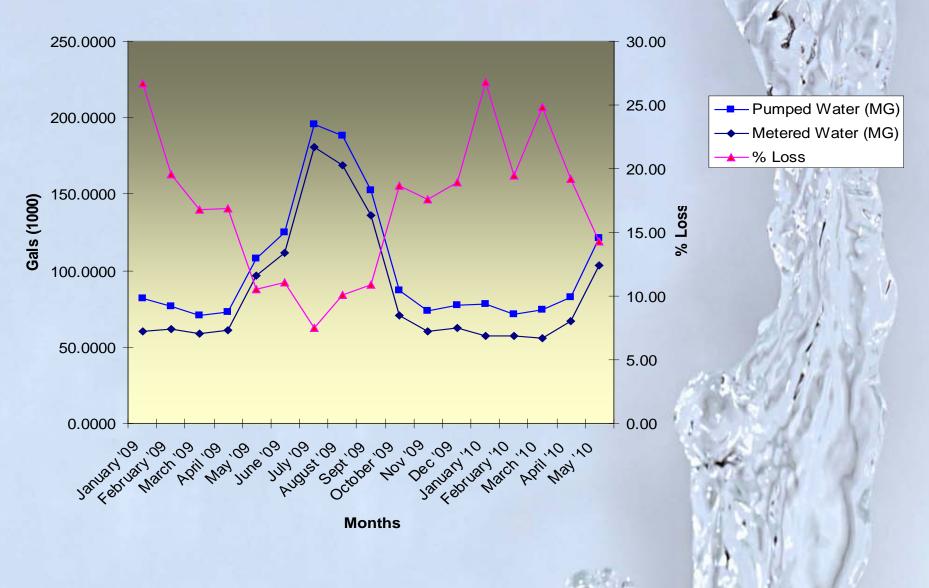
Unavoidable Annual Real Losses (UARL):

From Above, Real Losses = Current Annual Real Losses (CARL):

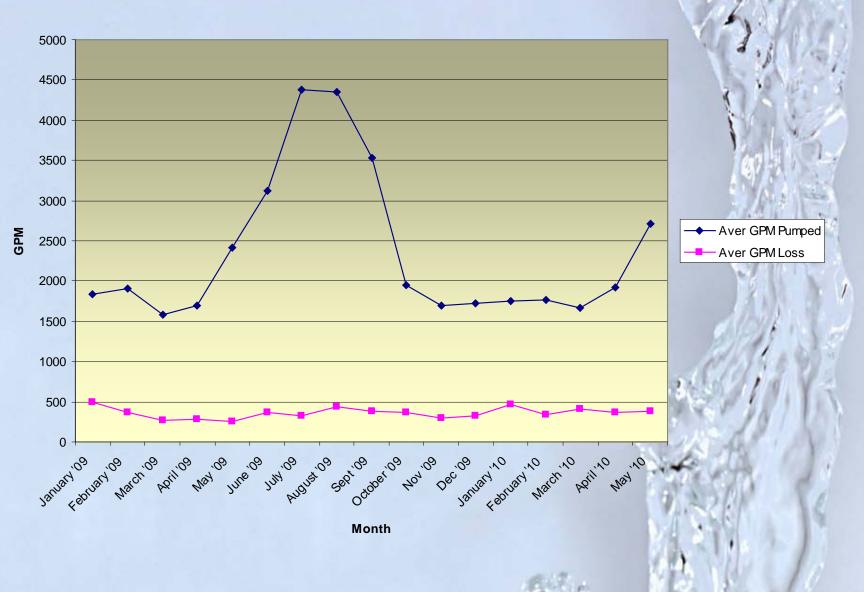
Infrastructure Leakage Index (ILI) [CARL/UARL]:

AWWA audit vs.LMO2 Form

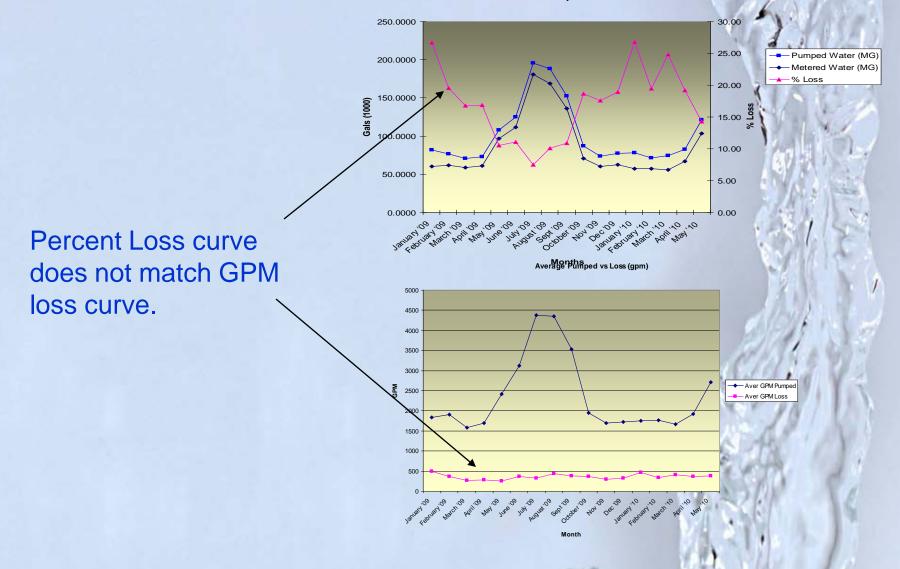
- "Unaccounted for" water in LMO2 is <u>identified</u> in the Audit Spreadsheet.
- No "allowable leakage" based on type and age of pipe in the AWWA Audit.
- Validation grading scale used in the AWWA Audit to help with data issues.
- AWWA Audit results are based on lost revenue and help target remediation.
- AWWA Audit allows for corrections to be applied for meter inaccuracies (At production meters, customer meters).

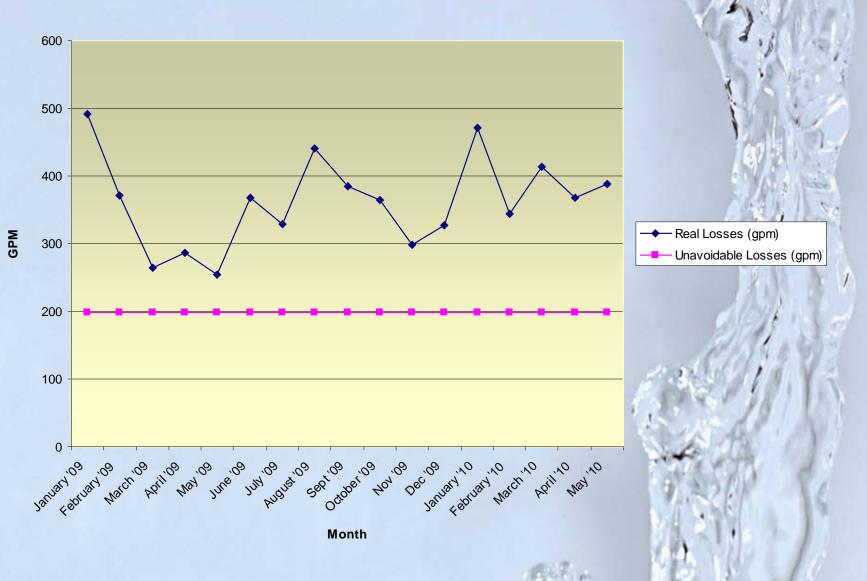

8.19

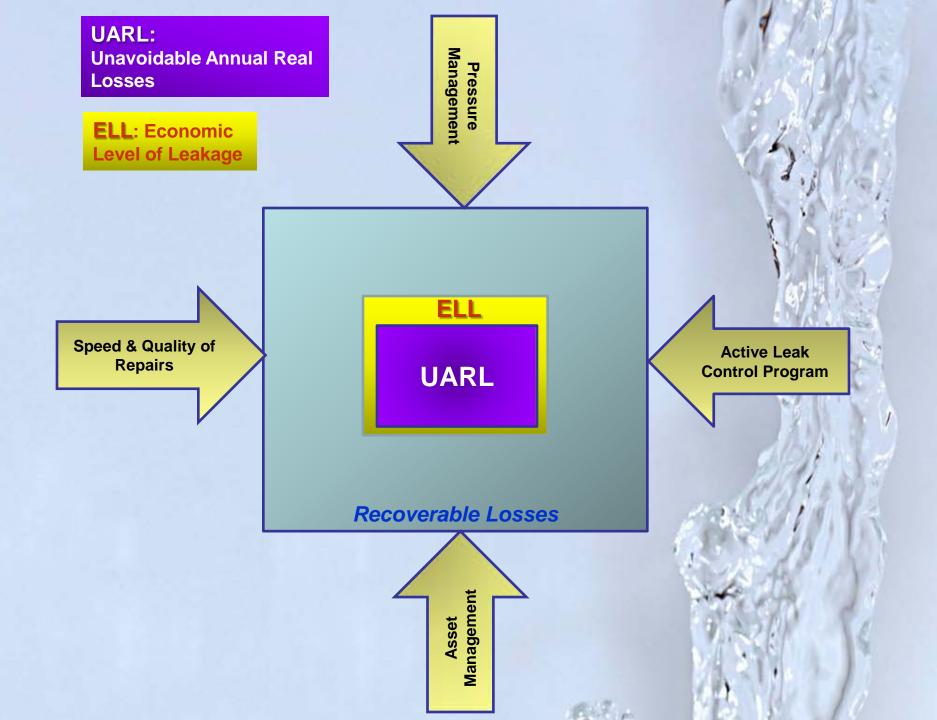
 AWWA audit shows where water use and losses are in Balance Matrix.


Developing Actions

- Monitor, Maintain and / or Manage
- Improve data
- Develop a "bottom up" audit
- Refer to M36 and other AWWA references
- Other publications, IWA and privately authored
- Review case studies
- Comments to wlc@awwa.org

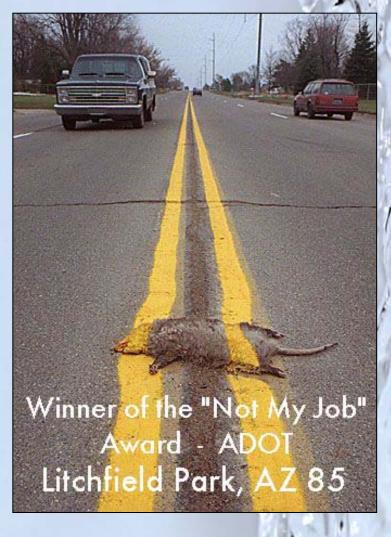

Pumped vs Billed vs % Loss


Average Pumped vs Loss (gpm)



Pumped vs Billed vs % Loss

Real Losses vs Unavoidable losses



Questions?

johnnyv@mesimpson.com

Don't play Possum with Water Loss Management!!

Discussion: Internal & External Communications and Outreach Strategies

Abby Crisostomo, Metropolitan Planning Council

Discussion: Internal & External Communications and Outreach Strategies

- Coordinating with other municipal staff on education and enforcement
- Sharing outreach tools
- Pairing sticks and carrots

Outdoor Water Conservation Manual for Northwest Planning Alliance Communities

Community Approaches to Sustainable Outdoor Water Use

Wrap-up, Questions, Announcements

Metropolitan **Planning** Council

Chicago Metropolitan Agency for Planning

Jenessa Rodriguez <u>Rodriguez@dpwc.org</u> Terry McGhee <u>McGhee@dpwc.org</u> John Spatz <u>Spatz@dpwc.org</u>

Abby Crisostomo <u>acrisostomo@metroplanning.org</u> Josh Ellis jellis@metroplanning.org

Erin Aleman ealeman@cmap.illinois.gov

Hilary Holmes <u>Hillary.Holmes@us.mwhglobal.com</u> Karl Johnson <u>Karl.Johnson@us.mwhglobal.com</u>

Resource List

 Model Water Use Conservation Ordinance, Chicago Metropolitan Agency for Planning

http://www.cmap.illinois.gov/water-2050/resources

 Regional Water Conservation Lawn Watering Ordinance, Northwest Water Planning Alliance

http://www.nwpa.us/pdfs/resource_center/NWPA%20Regional%20Lawn%20Wat ering%20Ordinance%20110712-FINAL.pdf

 "Promoting Sustainable Building and Development Practices in Lake County"-Sample Ordinances and Information Sources, Lake County

http://issuu.com/lakecounty/docs/sustainablepractices?mode=embed&layout

- Immeasurable Loss: Modernizing Lake Michigan Water Use, Metropolitan Planning Council
- http://www.metroplanning.org/waterloss
- M36 Water Audit, American Water Works Association

http://www.awwa.org/resources-tools/water-knowledge/water-loss-control.aspx

Workshop 3: Indoor & Outdoor Water Use

July 31, 2013, 8:30 am to noon, DuPage Water Commission

- Importance of water conservation for indoor and outdoor water use
 - Jared Teutsch, Alliance for the Great Lakes
- Identifying and prioritizing top water users and how to work with commercial and industrial customers
 - Karl Johnson, MWH Global
- How to work with residential users on indoor and outdoor water use
 - Karl Johnson and Hillary Holmes, MWH Global
- Performance tracking for water conservation ordinances and initiatives
 - Ned Paschke, University of Wisconsin, Madison

